
                ISSN (Online) 2278-1021 
                                                                                                                                                                                                                ISSN (Print) 2319-5940 

 
International Journal of Advanced Research in Computer and Communication Engineering 
Vol. 4, Issue 7, July 2015 
 

Copyright to IJARCCE                                          DOI 10.17148/IJARCCE.2015.4720                                                         92 

Fault Tolerance and Load Balancing algorithm in 

Cloud Computing: A survey 
Sushil Kumar

1
, Deepak Singh Rana

2
, Sushil Chandra Dimri

3
   

Assistant Professor, Department of Computer Application, Graphic Era University, Dehradun, India
1 

Assistant Professor, Department of Computer Science, Graphic Era Hill University, Dehradun, India
2 

Professor, Department of Computer Application, Graphic Era University, Dehradun, India
3 

 

Abstract: Cloud computing is developing as a new standard for deploying, organizing, and accessing large scale 

distributed computing applications over the network. In cloud computing, fault tolerance is a major problem and one of 

the metric which consider being most important since the resource failure affects job execution, throughput, response 

time and performance of system and network. Fault tolerance in load balancing is one of the main challenges in cloud 

computing, which is required to distribute the workload equally across all the nodes, detect the fault and remove fault 

from the network and share workload to all the nodes to increase the performance of cloud network. The load is an 

amount of work that a computation system performs, which can be classified as network load, storage capacity, 

memory capacity and CPU load. This paper describes a survey on fault tolerance, fault tolerance techniques, load 

balancing algorithm and load balancing schemes including fault tolerance in a cloud environment.  

Keywords: Cloud computing, Load Balancing, Fault Tolerance, Load balancing, Static load balancing, Dynamic load 

balancing algorithm. 
 

I. INTRODUCTION 

“A cloud computing is a set of network enabled services, 

providing scalable, QoS guaranteed, normally 

personalized, inexpensive computing platforms on 

demand, which could be accessed in a simple and 

pervasive way”[1].  

The US National Institute of Standards and Technology 

(NIST) has published a working definition [2] as “a model 

for enabling ubiquitous, convenient, on-demand network 

access to a shared pool of configurable computing 

resources (e.g., Networks, servers, storage, applications, 

and services) that can be rapidly provisioned and released 

with minimal management effort or service provider 

interaction”.  
 

This definition describes Cloud Computing using [3]: 
 

• Five characteristics: on-demand self-service, broad 

network access, resource pooling, rapid elasticity, and 

measured service.  
 

• Four deployment models: private Clouds, community 

Clouds, public Clouds, and hybrid Clouds. 
 

• Three service models: Software as a Service (SaaS), 

Platform as a Service (PaaS), and Infrastructure as a 

Service (IaaS). 
 

Figure 1 shows the architecture of cloud which contains 

cloud services, resources with examples. 
 

The remainder of the paper is organized as follows: 

Section II contains the introduction of fault tolerance and 

its techniques. Section III describes the load balancing and 

some existing load balancing algorithms.  
 

Some existing load balancing schemes, including fault 

tolerance algorithms are analyzed in section IV and the 

final conclusion is given in section V. 

 

 

 
Fig 1. Cloud Computing Architecture 

 

II. FAULT TOLERANCE 

Fault tolerance is one of the metric which is considered to 

be most important since the resource failure affects job 

execution, throughput, response time and performance of 

the system. Thus a fault tolerance policy is required to 

detect failures, resolve these failures, thus improving 

performance metric [4].  A load balancing algorithm 

should have the fault tolerance ability, means it should 

perform uniform load balancing in spite of failure of 

arbitrary node or link. Fault tolerance is a major concern to 

guarantee availability of critical services as well as 

application execution [4][5].  

Reactive fault tolerance: Reactive fault tolerance policies 

reduce the effect of failures on application execution when 

failure effectively occurs [5].  



                ISSN (Online) 2278-1021 
                                                                                                                                                                                                                ISSN (Print) 2319-5940 

 
International Journal of Advanced Research in Computer and Communication Engineering 
Vol. 4, Issue 7, July 2015 
 

Copyright to IJARCCE                                          DOI 10.17148/IJARCCE.2015.4720                                                         93 

Proactive fault tolerance: Proactive fault tolerance 

policies are to avoid recovery from faults, errors and 

failures by predicting them and proactively replace the 

suspected components with other working components 

[5]. 
 

A. Existing Fault Tolerance Techniques in Cloud 

Computing: 

In cloud, fault can be categorized on the basis of 

computing resources, time and on various issues like: 

Network fault, Physical faults, Processor faults, Process 

faults, Service expiry fault.  

In cloud, there are various fault tolerance techniques 

available some of these are [6]:  

 Check pointing: A Checkpoint is an efficient 

task level fault tolerance technique for long running and 

big applications. In this technique after doing every 

change in system a check pointing is done. When a task 

fails, rather than from the beginning, it is allowed to be 

restarted that job from the recently checked pointed stare.  

 Self- Healing: For better performance, a big task 

can divided into various parts. When several instances of 

an application are running on several virtual machines, it 

automatically handles failure of application instances.  

 Job Migration: During job migration, failure of 

any task at any time, the task can be migrated to another 

machine.  

 Replication: In replication, various tasks are 

replicated and they are running on different resources, for 

the successful execution and for getting the desired result.  

 Task Resubmission: A job may fail now 

whenever a failed task is detected, In this case at runtime 

the task is resubmitted either to the same or to a different 

resource for execution.  

 Masking: After the employment of error 

recovery the new state needs to be identified as a 

transformed state. Now if this process applied 

systematically even in the absence of effective error 

provide the user error masking.  

 Timing check: Timing check is a supervision 

technique with time of critical function and this is done by 

watch dog.  

 S-Guard: S-Guard is based on rollback recovery 

and it is less turbulent to normal stream processing.  

 Safety-bag checks: In the safety - bag checks the 

commands which are not meeting the safety properties and 

block those commands.  

 Pre-emptive Migration: Pre-emptive Migration 

is techniques in which the application is constantly 

monitored, analyzed and count on a feedback-loop control 

mechanism.  

 Retry: Retry is the simplest technique that retries 

the failed task on the same resource and implement a task 

again and gain.  

 Rescue workflow: Rescue workflow is a 

technique that allows the workflow to persist until it 

becomes unimaginable to move forward without catering 

the failed task.  

 Reconfiguration: In reconfiguration technique 

the faulty component eliminated from the system. 

 Software Rejuvenation: It is a technique that 

designs the system for periodic reboots and it restarts the 

system with clean state with a fresh start.  

 

III. LOAD BALANCING 

Load balancing is all about availability, scalability and 

performance of resources for critical web-based 

applications. Load balancing is a process of reassigning 

the total load to the individual nodes of the collective 

system of the facilitate networks and resources to improve 

the response time of the job with maximum throughput in 

the system [7]. The important things which said about load 

balancing are estimation of load, comparison of load, 

stability of different system, performance of system, 

interaction between the nodes, nature of work to be 

transferred, selecting of nodes and many other ones to 

consider while developing such algorithm [8]. Initially 

Load balancing techniques are classified as:  

Static algorithms: Static algorithms are those which divide 

the traffic equivalently between servers. 

Dynamic algorithm: Dynamic algorithms are which search 

for the lightest server in the network and then designated 

appropriate weights on it. 
 

A. Existing Load Balancing Algorithm: 

Some existing load balancing algorithms are discussed as 

follows: 

Biased Random Sampling [9] approach the load on a 

server is represented as a virtual graph having connectivity 

with each node. Each server is symbolized as a node in the 

graph, with each in degree directed to the free resources of 

the server. Whenever a node executes a job, it deletes an 

incoming edge, which indicates a reduction in the 

availability of free resource. After completion of a job, the 

node adds on an incoming edge, indicating an increase in 

the availability of free resource. Random sampling is used 

for the increment and decrement processes. The last node 

in the walk is selected for allocation of load; instead, any 

other node based on certain criteria could also be 

preferred. A node on receiving a job, will execute it only if 

its current walk length is equal to or greater than the 

threshold value. Else, the walk length of the job under 

consideration is incremented and another neighbor node is 

selected randomly. Again a new directed graph is formed 

and load balancing is achieved in a fully decentralized 

manner, thus making it suitable for large network systems 

like a cloud. 
 

Active Clustering [10] is considered as a self-aggregation 

algorithm, works on the principle of grouping the similar 

nodes and work together on these available groups. A set 

of processes is iteratively executed by each node on the 

network. Initially any node can become an initiator and 

selects another node from its neighbors to be the 

matchmaker node satisfying the criteria of being a 

different type than the former one. The matchmaker node 

then forms a connection between neighbors of it which are 



                ISSN (Online) 2278-1021 
                                                                                                                                                                                                                ISSN (Print) 2319-5940 

 
International Journal of Advanced Research in Computer and Communication Engineering 
Vol. 4, Issue 7, July 2015 
 

Copyright to IJARCCE                                          DOI 10.17148/IJARCCE.2015.4720                                                         94 

similar to the initiator. The matchmaker node, then 

removes the connection between itself and the initiator. 

 

Honey Bee Foraging [11] algorithm is derived from the 

behaviour of honey bees for finding and reaping food. In 

order to check for fluctuation in demand of services, 

servers are grouped under virtual servers (VS), having its 

own virtual service queues. Each server processing a 

request from its queue calculates a profit or reward on 

basis of CPU utilization, which is corresponds to the 

quality that the bees show in their waggle dance and 

advertise on the advert board. Each of the servers takes the 

role of either a forager or a scout. A server serving a 

request, calculates its profit and compare it with the 

colony profit, if profit was high, then the server stays at 

the current virtual server and if it was low, then the server 

returns to the forager or scout behaviour, thus balancing 

the load with the server.  

Join Idle Queue [12] load balancing algorithm is 

applicable for dynamically scalable web services. This 

technique involves a dispatcher to whom processors 

informs at the time of their idleness, without interfering 

with job arrivals. Thus removing the load balancing work 

from the critical path of request processing, system load is 

reduced; no communication overhead at job arrivals and 

no increment in actual response time. 

Divisible Load/Task Theory (DLT) [13] is inspired by 

level-balancing property of liquid. In DLT, a load can be 

arbitrarily partitioned into chunks for a group of 

processors with no priority relationship among obtained 

chunks. This approach assumes that the nodes in the grid 

to be homogeneous and during load balancing no task can 

neither insert the queue nor leave. A node can only 

exchange and collect information with their nearest 

neighbours within one hop to make grids converge to the 

load balanced equilibrium state. 

Load Balance Min-Min (LBMM) scheduling algorithm 

[14] and new optimized Load Balancing Max-Min-Max 

(LB3M) [15] had main objective to minimize execution 

time of each task, also avoid unnecessary replication of 

task on the node thereby minimizing overall completion 

time. Opportunistic Load balancing algorithm when 

combined with LBMM (OLB + LBMM) [14] keeps every 

node in working state to achieve load balance. Similar to 

LBMM, LB3M [15] also calculate average completion 

time for each task for all nodes. Then mark the task with 

maximum average completion time.  After that it 

dispatches the task of marked node to the unassigned node 

with minimum completion task, thus balancing the 

workload evenly among all nodes. 

IV. LOAD BALANCING SCHEMES 

INCLUDING FAULT TOLERANCE 

In this section we analyse load balancing schemes 

including fault tolerance and some of them are as follows: 

Ant Colony Optimization (ACO) [16] is an improved 

version of load balancing mechanism based on Ant 

Colony and Complex Network Theory (ACCLB) [17] in 

an open cloud computing federation. Both algorithms 

make use of ants’ pheromone to gather and update 

information about the cloud thus selecting a specific node 

in order to assign the task however evenly distributing 

work among nodes. The ants in proposed algorithm 

continuously originate from the Head node and traverse all 

around the network making forward and backward 

movement to find the under loaded and overloaded nodes.  

In ACO [17] two types of pheromones are used Foraging 

Pheromone (FP) used to explore overloaded node by 

forward movement of ants while Trailing Pheromone (TP) 

used to discover its path back to the under loaded node. In 

order to limit the number of ants in the network, they 

would commit suicide once it finds the target node. 

 

ESWLC (Exponential Smooth Forecast based on 

Weighted Least Connection) [18] improved form of 

Weighted Least-Connection (WLC) along with its 

features, it also take into account time series and trials. 

However WLC counts the connections of each server and 

reports the appropriate server based on the multiplication 

of a server weight and its count of connections, ESWLC 

algorithm concludes assigning a certain task to a node only 

after getting to know about the node capabilities. ESWLC 

builds the decision based on the experience of the node’s 

CPU power, memory, number of connections and the 

amount of disk space currently being used. ESWLC then 

predicts which node is to be selected based on exponential 

smoothing [18]. 

 

Map Reduce [19] In Map Reduce Fault Tolerance, the 

master first attempts to assign a map task (in the queue) 

whose data is on that machine (data locality) provided that 

the machine is free to process the request. In case of 

failure in the execution, it attempts to assign a map task 

whose data is located (on a machine) on the same network 

switch with that machine (rack locality). Therefore, on 

occurrence of failure complete map tasks need to be re-

executed, but completed reduce tasks does not.  To ensure 

that a failed job can be recovered and is being scheduled 

with a guaranteed time period, a threshold value is used 

whereby beyond it, the failed job will be scheduled on the 

next available machine in spite of data locality [19]. 

 

Virtual Machine Mapping (VM Mapping) [20] is based 

on multi-dimensional resources to achieve overall load 

balance. This algorithm adopts the centralized control 

architecture comprises of scheduling controller and 

resource monitor as core elements of the system. The 

scheduling controller is responsible for VM lifecycle 

management and fulfilling allocation policy while the 

resource monitor collects the information about resources 

from physical hosts [20].The processes involved in VM 

mapping policy goes through following four phases: 

firstly; accepting the request for virtual machine on FCFS 

principle, secondly; obtaining resource information which 

in turn is maintain by resource monitor, thirdly; VM initial 

placement by scheduling controller, finally; user can 

remotely access the application on cloud.  



                ISSN (Online) 2278-1021 
                                                                                                                                                                                                                ISSN (Print) 2319-5940 

 
International Journal of Advanced Research in Computer and Communication Engineering 
Vol. 4, Issue 7, July 2015 
 

Copyright to IJARCCE                                          DOI 10.17148/IJARCCE.2015.4720                                                         95 

Dual Direction FTP (DDFTP) [21] is a dual-direction 

downloading algorithm from FTP servers and its modified 

version is in [22], introducing efficient fault-tolerance and 

load balancing with minimal communication and 

coordination overhead while executing services in parallel 

over shared and dynamic heterogeneous distributed cloud 

infrastructure. The main idea of this algorithm is to splits 

the file into two half and task is being executed on two 

servers, such that each server starts processing the task in 

an opposite direction from the other, one server starts 

processing from the beginning in an incremental order 

while other starts the file downloading from the last block 

in decrement order. The task is considered to be finished 

when the two servers download two consecutive blocks 

meeting at consent. As a result, both servers will work 

independently, but will end up downloading the whole file 

to the client in the best possible time given the 

performance and properties of both servers [22]. 

Moreover, attributes such as network load, node load, 

network speed are automatically taken into consideration, 

while no run-time monitoring of the nodes is required, yet 

it maintain good load balancing among all participating 

server. In addition, if one of the servers fails before 

completion of task, second one continues the task till it 

reaches to the point where the other gets fail. 

  

Fault Tolerance Policy on Dynamic Load Balancing 

(FTDLB) [23] is a fault tolerance policy that could 

tolerate the node’s permanent failures while balancing 

load of real-time applications on P2P grids. For improving 

the system reliability, FTDLB duplicates jobs into 

different sites and adaptively adjust the load of real-time 

applications to achieve the job’s minimal turnaround time. 

FTDLB algorithm works as follows; each site regularly 

sends "heartbeat" messages to its neighbour site which 

includes the CPU utilization, memory usage, job status, 

etc. When receiving of "heartbeat" messages stops, within 

a fixed period, it indicates failure of neighbour site thus 

triggering fault tolerance policy.  

 

O-Ring (Overlapped Ring) [24] is a novel architecture 

that provides fault tolerance and load balancing for 

distributed and dynamic scenario. O-Ring use the 

approach of  data replication (mirroring) and data 

distribution in order to provide both fault tolerance and 

load balancing in well- organized manner. In the initial 

phase data items are replicated on the neighbouring peers 

on the ring in order to achieve fault tolerance and each 

peer also stores the address of its predecessor and 

successor. Every ring had a Directory Service which is 

responsible for routing of requests like; data retrieval, 

updates, insertions and deletions on appropriate peers. As 

copy of data is already being replicated for backup on 

another peer short-term fluctuations are addressed by 

moving the boundaries of responsibility between peers 

without the need to move the data itself. Thus, 

redistributing the load in forward and backward direction 

in order to balance the load faster, and minimizing 

interferes with concurrent query processing. Any types of 

fluctuations, that require the movement of data, are 

addressed by moving the backup copies of the data in the 

background, without disturbing the primary copy of the 

data that is being used to handle requests for the data. 

Along with less expensive load balancing of O-Ring also 

achieves higher throughput, as it can balance the load with 

lower overheads and can respond rapidly to load 

imbalances. 

 

Honey Bee Behaviour inspired Load Balancing [HBB-

LB] [25] a technique which helps to achieve even load 

balancing across virtual machine to maximize throughput. 

It considers the priority of task waiting in queue for 

execution in virtual machines. After that work load on VM 

calculated decides whether the system is overloaded, 

under loaded or balanced. And based on this VMs are 

grouped. New according to load on VM the task is 

scheduled on VMs. Task which is removed earlier. To find 

the correct low loaded VM for current task, tasks which 

are removed earlier from over loaded VM are helpful. 

Forager bee is used as a Scout bee in the next steps. 

 

V. CONCLUSION 

In the cloud computing environment, fault tolerance with 

load balancing is one of the main issues that is required to 

improve the performance of it. This paper primarily 

focuses on fault tolerance and load balancing algorithms in 

a cloud environment.  

For this, various existing fault tolerance techniques, load 

balancing algorithms and load balancing algorithm 

including fault tolerance are surveyed. From the survey, 

we have identified that there is a need to implement the 

autonomic fault tolerance technique for multiple instances 

of an application running on several virtual machines, a 

new approach needs to be developed that integrate fault 

tolerance techniques with load balancing algorithm or with 

existing workflow scheduling algorithms.  

REFERENCES 
 

[1] L. Wang, G. Laszewski, “Scientific cloud computing: Early 

definition and experience”, in Proceedings of 10th IEEE 
International Conference on High Performance Computing and 

Communications (Dalian, China, 2008), pp. 825–830.  
[2] Mell, Peter, and Tim Grance. "Draft NIST working definition of 

cloud computing."Referenced on June. 3rd 15 (2009). 

[3] Rimal, Bhaskar Prasad, Eunmi Choi, and Ian Lumb. "A taxonomy 
and survey of cloud computing systems." INC, IMS and IDC, 2009. 

NCM'09. Fifth International Joint Conference on. IEEE, 2009. 

[4] Geoffroy Vall´ee , Kulathep Charoenpornwattana, Christian 
Engelmann Anand Tikotekar , Chokchai Leangsuksun , Thomas 

Naughton , Stephen L. Scott ,“A Framework For Proactive Fault 

Tolerance”, Availability, Reliability and Security, 2008. ARES 08. 
Third International Conference pp:659-664. 

[5] Akanksha Chandola Anthwal, Nipur, “Survey of Fault Tolerance 

Policy for Load Balancing Scheme in Distributed Computing”, 
International Journal of Computer Applications (0975 – 8887) 

Volume 74– No.15, July 2013.  

[6] Saikia, Lakshmi Prasad, and Yumnam Langlen Devi. "FAULT 
TOLEREANE TECHNIQUES AND ALGORITHMS IN CLOUD 

COMPUTING." International Journal of Computer Science & 

Communication Networks 4.1 (2014):1 
[7] R. Shimonski. “Windows 2000 & Windows Server 2003 Clustering 

and Load Balancing”, Emeryville. McGraw-Hill Professional 

Publishing, CA, USA (2003), p 2, 2003.  



                ISSN (Online) 2278-1021 
                                                                                                                                                                                                                ISSN (Print) 2319-5940 

 
International Journal of Advanced Research in Computer and Communication Engineering 
Vol. 4, Issue 7, July 2015 
 

Copyright to IJARCCE                                          DOI 10.17148/IJARCCE.2015.4720                                                         96 

[8] Ali M. Alakeel, “A Guide to Dynamic Load Balancing in 

Distributed Computer Systems”, IJCSNS International Journal of 
Computer Science and Network Security, VOL.10 No.6, June 2010.  

[9] O. Abu- Rahmeh, P. Johnson and A. Taleb-Bendiab, “A Dynamic 

Biased Random Sampling Scheme for Scalable and Reliable Grid 
Networks”, INFOCOMP - Journal of Computer Science, ISSN 

1807-4545, 2008, VOL.7, N.4, December, 2008, pp. 01-10. 

[10] F. Saffre, R. Tateson, J. Halloy, M. Shackleton and J.L. 
Deneubourg, “Aggregation Dynamics in Overlay Networks and 

Their Implications for Self-Organized Distributed Applications.” 

The Computer Journal, March 31st, 2008. 
[11] Randles, M., D. Lamb and A. Taleb-Bendiab, “A Comparative 

Study into Distributed Load Balancing Algorithms for Cloud 

Computing,” in Proc. IEEE 24th International Conference on 
Advanced Information Networking and Applications Workshops 

(WAINA), Perth, Australia, April 2010. 

[12] Yi Lua, Qiaomin Xiea, Gabriel Kliotb, Alan Gellerb, James R. 
Larusb, Albert Greenbergc, “ Join-Idle-Queue: A Novel Load 

Balancing Algorithm for Dynamically Scalable Web Services” 

Volume 68 Issue 11, November, 2011, pp:1056-1071, Elsevier 
Science Publishers, 2011. 

[13] V. M. B. Veeravalli, D. Ghose and T. Robertazzi, “Scheduling 
Divisible Loads in Parallel and Distributed Systems,” IEEE CS 

Press, 1996. 

[14] S. Wang, K. Yan, W. Liao, and S. Wang, “Towards a Load 
Balancing in a Three-level Cloud Computing Network”, 

Proceedings of the 3rd IEEE International Conference on Computer 

Science and Information Technology (ICCSIT), Chengdu, China, 
September 2010, pages 108-113.  

[15] Che-Lun Hung, Hsiao-hsi Wang and Yu-Chen Hu “Efficient Load 

Balancing Algorithm for Cloud Computing Network”, International 
Conference on Information Science and Technology (IST 2012), 

April 28-30, pp; 251-253. 

[16] Nishant, K. P. Sharma, V. Krishna, C. Gupta, KP. Singh, N. Nitin 
and R. Rastogi, "Load Balancing of Nodes in Cloud Using Ant 

Colony Optimization." In proc. 14th International Conference on 

Computer Modelling and Simulation (UKSim), IEEE, pp: 3-8, 
March 2012. 

[17] Zhang, Z. and X. Zhang, "A load balancing mechanism based on 

Ant Colony and Complex Network Theory in Open Cloud 
Computing federation." In proc. 2nd International Conference on. 

Industrial Mechatronics and Automation (ICIMA), IEEE, Vol. 2, 

pp:240-243, May 2010. 
[18] Ren, X., R. Lin and H. Zou, "A dynamic load balancing strategy for 

cloud computing platform based on exponential smoothing 

forecast" in proc. International Conference on. Cloud Computing 
and Intelligent Systems (CCIS), IEEE, pp: 220-224, September 

2011. 

[19] Qin Zheng, “Improving MapReduce Fault Tolerance in the Cloud”, 
Parallel & Distributed Processing, Workshops and Phd Forum 

(IPDPSW), 2010 IEEE International Symposium, April 2010. 

[20] Ni, J., Y. Huang, Z. Luan, J. Zhang and D. Qian, "Virtual machine 
mapping policy based on load balancing in private cloud 

environment," in proc. International Conference on Cloud and 

Service Computing (CSC), IEEE, pp: 292-295, December 2011. 
[21] Anju Bala, Inderveer Chana, “Fault Tolerance- Challenges, 

Techniques and Implementation in Cloud Computing”, IJCSI 

International Journal of Computer Science Issues, Vol. 9, Issue 1, 
No 1, January 2012. 

[22] Jameela Al-Jaroodi, Nader Mohamed, and Klaithem Al Nuaimi, 

“An Efficient Fault-Tolerant Algorithm for Distributed Cloud 
Services,” in proc. 2012 IEEE Second Symposium on Network 

Cloud Computing and Applications, pp:1-8.  

[23] Tian-Liang Huang, Tian-An Hsieh, Kuan-Chou Lai, Kuan-Ching 
Li, Ching-Hsien Hsu, and Hsi-Ya Chang, “Fault Tolerance Policy 

on Dynamic Load Balancing in P2P Grids”, in proc. International 

Joint Conference of IEEE TrustCom-11/IEEE ICESS-11/FCST-11, 
2011, pp:1413-1419. 

[24] P. M. Melliar-Smith and Louise E. Moser, “O-Ring: A Fault 

Tolerance and Load Balancing Architecture for Peer-to-Peer 
Systems”, Proceedings of International Conference of the Chilean 

Computer Science Society 2009, IEEE Computer Society, pp:25-
33. 

[25] Dhinesh B. L.D , P. V. Krishna, “Honey bee behavior inspired load 

balancing of tasks in cloud computing environments”, in proc. 
Applied Soft Computing, volume 13, Issue 5, May 2013. 

 


